Национальный горный университет — соответствие Времени


   Яндекс.Метрика    Рейтинг@Mail.ru webgari.com Рейтинг сайтов

Встраиваемое программное обеспечение NVIDIA упрощает ускорение приложений глубокого обучения

Встраиваемое программное обеспечение NVIDIA упрощает ускорение приложений глубокого обучения

Исследователи из Калифорнийского Университета в Беркли интегрируют новое программное обеспечение в Caffe, одну из самых популярных и развивающихся инфраструктур глубокого обучения

САНТА-КЛАРА, Калифорния— 7 сентября, 2014—NVIDIA сегодня представила простое в развертывании программное обеспечение, призванное помочь разработчикам направить мощь графических процессоров на ускорение работы приложений глубокого обучения (Deep Learning) в таких областях, как классификация изображений, видеоаналитика, распознавание речи и обработка естественного языка.

NVIDIA® cuDNN, мощная библиотека программирования на базе модели параллельного программирования CUDA®, ускоряет процессы глубокого обучения до 10 раз с помощью графических процессоров по сравнению с методами, выполняющимися только на CPU. Благодаря простоте имплементации, cuDNN позволяет разработчикам быстро создавать и оптимизировать новые модели обучения и разрабатывать приложения более высокой точности, используя вычислительный потенциал GPU-ускорителей.

Глубокое обучение — это быстро развивающийся сегмент рынка машинного обучения, который включает создание сложных, многоуровневых, «глубоких» нейронных сетей. С помощью таких сетей мощные компьютеры учатся распознавать паттерны и объекты через анализ большого объема данных тренировки.

Графические процессоры все шире применяются для ускорения приложений глубокого обучения, по мере того как исследователи и программисты осознают огромные преимущества GPU в ускорении процессов тренировки с большими объемами данных.

Исследователи из Калифорнийского Университета в Беркли интегрировали cuDNN в Caffe — одну из самых распространенных в мире инфраструктур для создания приложений глубокого обучения.

Кроме того, более 90% команд и трое из четырех победителей престижного конкурса 2014 ImageNet Large Scale Visual Recognition Challenge также использовали графические процессоры для ускорения своих проектов по глубокому обучению.

Подробнее об интеграции cuDNN в инфраструктуру глубокого обучения Caffe смотрите на сайте cuDNN. Подробнее о преимуществах GPU-ускорения для машинного обучения смотрите на сайте NVIDIA.

Подробнее о событии — в нашем блоге.

Следите за новостями NVIDIA:
О компании NVIDIA

NVIDIA (NASDAQ: NVDA) находится на вершине искусства и науки визуальных вычислений с 1993 года. Технологии компании превращают мир изображений в мир интерактивных открытий для самых разных пользователей — геймеров и ученых, пользователей мобильных устройств, офисных работников и не только. Подробнее смотрите на сайтах http://www.nvidia.ru, http://nvidianews.nvidia.com и http://blogs.nvidia.com.

За дополнительной информацией обращайтесь:
Ирина Шеховцова
NVIDIA Corporation
Тел.: +7 (495) 981 03 00 доб. 10777
E-mail: irinas@nvidia.com


Дата создания: 12.09.2014 11:29:19

До списку


© 2006-2017 НГУ Інформація про сайт